Thông tin chuyên ngành Xi măng Việt Nam

Nghiên cứu thử nghiệm

Nhật Bản: Độ bền kết cấu bê tông nhà máy điện hạt nhân cứng hơn ba lần so với ban đầu

(21/09/2021 9:30:09 AM) Các nhà nghiên cứu tại Đại học Nagoya, Nhật Bản đã phát hiện ra một hiện tượng đáng ngạc nhiên trong một nhà máy điện hạt nhân bị bỏ hoang, độ bền của kết cấu bê tông không những không giảm mà còn cứng hơn so với ban đầu, gấp ba lần so với ban đầu.

Nhà máy điện hạt nhân này là nhà máy điện hạt nhân Hamaoka ở Nhật Bản, được xây dựng vào năm 1976 và hoạt động cho đến năm 2009, sau đó nó ngừng hoạt động và bị bỏ hoang. Sau khi bị bỏ hoang trong nhiều năm, các nhà khoa học đã mở cửa nhà máy điện hạt nhân vào năm ngoái và kiểm tra các bức tường bê tông dày của nhà máy điện hạt nhân.


Nhà máy điện hạt nhân Hamaoka.
 
Nghiên cứu sâu hơn cho thấy có một chất hiếm Al-tobermorite, một loại aluminosilicat, xuất hiện trong những bức tường bê tông này ở nhiệt độ trung bình đến cao.

Trước đó, các nhà khoa học đã phát hiện ra chất này tại các công trình trong thời kỳ La Mã vào thế kỷ thứ nhất sau Công Nguyên, Ý và các nước Châu Âu khác đã sử dụng xi măng để xây dựng các công trình như cảng. Những bờ kè này vẫn vững chắc ở cảng sau khi bị sóng đánh trôi 2000 năm, không những không bị hư hại mà còn trở nên vững chắc hơn.

Các nhà nghiên cứu nhận thấy các hỗn hợp xi măng hiện đại có xu hướng bị xói mòn, đặc biệt khi có nước biển, nhưng công thức từ thời La Mã cổ gồm tro núi lửa, vôi, nước biển và khoáng chất được gọi là nhôm tobermorite thực sự có tính năng tăng cường độ vững bền của bê tông và ngăn ngừa các vết nứt lan rộng. Công thức này hình thành do nước biển liên tục đập vào các bờ tường trong hàng trăm năm, cho phép hỗn hợp khoáng chất của oxit silic và vôi phát triển giữa các lớp đá vôi và vữa, hình thành khả năng chống chọi với lực của nước.

Hóa ra xi măng La Mã cổ đại được làm từ tro núi lửa, vôi, nước biển và đá núi lửa khổng lồ. Nó có chứa nhôm kim loại, giúp tăng cường đáng kể độ cứng và độ đàn hồi của công trình. Sau khi ngâm trong nước biển một thời gian dài, đá núi lửa và thủy tinh trong bê tông sẽ từ từ tan ra, và phản ứng với một số khoáng chất như silicat, phillipsite, và tạo thành aluminosilicat, sau đó các vết nứt đã xuất hiện theo thời gian trên các con đập được lấp lại, và cấu trúc ngày càng trở nên mạnh mẽ hơn.

Do đó, chìa khóa để tăng cường độ của bê tông trong nước biển nằm ở Al-tobermorite. Tuy nhiên, các nhà khoa học Nhật Bản phát hiện ra rằng rất khó trộn trực tiếp Al-tobermorite vào bê tông hiện đại, vì cần nhiệt độ trong phòng thí nghiệm lên tới hơn 70°C để tạo ra chất này, tuy nhiên nhiệt độ quá cao sẽ làm cường độ của bê tông giảm, do đó nhiệt độ của bê tông cần được giới hạn ở mức 65°C hoặc thấp hơn.


Tobermorite là khoáng chất hydrat canxi silicat.

Điều này đã tạo ra một sự mâu thuẫn, nhưng làm thế nào những bức tường bê tông của La Mã cổ đại và những bức tường bê tông của các nhà máy điện hạt nhân Nhật Bản lại sở hữu được chất này?

Sau khi các nhà khoa học Nhật Bản nghiên cứu thêm, họ phát hiện ra rằng các bức tường bê tông của các lò phản ứng hạt nhân bị bỏ hoang đã giữ được cung cấp độ ẩm và duy trì nhiệt độ 40 - 55°C trong suốt quá trình vận hành của nhà máy điện hạt nhân (trong 16,5 năm), điều này làm tăng tỷ lệ silic và nhôm ion cũng như độ kiềm của tường. Cuối cùng dẫn đến sự hình thành Al-tobermorite, có cường độ tương đương với bê tông La Mã cổ đại.


Hình ảnh phân tích từ tia X cho thấy vật liệu kết dính gồm canxi, nhôm-silicate-hydrate (C-A-S-H) hình thành bởi tro núi lửa, vôi và hỗn hợp nước biển. Tinh thể platin của Al-tobermorite đã phát triển trong ma trận CASH này.

Dường như thiên nhiên có thể dễ dàng làm được những điều mà cho tới nay loài người vẫn không thể làm được.
 
ximang.vn (TH/ Tri thức trẻ)

 

Share |

Các tin khác:

Sàn gỗ có khả năng sinh ra điện ()

Có thể tạo ống thép mỏng nhẹ chịu lực tốt theo kết cấu lông nhím ()

Nghiên cứu lớp nhiệt điện dẻo trong lõi bê tông có khả năng chống động đất ()

Thử nghiệm đường cao tốc bê tông có thể sạc không dây cho các phương tiện giao thông ()

Phát triển loại xi măng làm giảm lượng khí thải trong quá trình sản xuất ()

Phát hiện vi khuẩn sống trong lõi bê tông có khả năng phát hiện và lấp đầy các vết nứt ()

Nghiên cứu chế tạo hệ thống thiết bị kho nguyên liệu cho nhà máy xi măng ()

Tận dụng tro đáy từ nhà máy đốt rác làm vật liệu xây dựng ()

Vật liệu có khả năng tự điều chỉnh nhiệt độ cho công trình xây dựng ()

Cải thiện khả năng chống nước và chống đứt gãy từ vật liệu nano và xi măng truyền thống ()

bannergiavlxd
faq

Bảng giá :

Chủng loại

ĐVT

Giá bán

Chinfon

1.000đ/tấn

1.580

Yên Bái

1.000đ/tấn

1.180

Tam Điệp

1.000đ/tấn

1.460

Chinfon

1.000đ/tấn

1.410

Bút Sơn

1.000đ/tấn

1.350

Chủng loại

ĐVT

Giá bán

Tuyên Quang

1.000đ/tấn

1.190

Hạ Long

1.000đ/tấn

1.360

Thăng Long

1.000đ/tấn

1.350

Cẩm Phả

1.000đ/tấn

1.300

Cẩm Phả

1.000đ/tấn

1.340

Chủng loại

ĐVT

Giá bán

Xem bảng giá chi tiết hơn

Chủng loại

ĐVT

Giá bán

Chủng loại

ĐVT

Giá bán

Chủng loại

ĐVT

Giá bán

Xem bảng giá chi tiết hơn

Tỷ giá

Giá vàng

Tỷ giá hối đoái
Mã ngoại tệ C.Khoản
Giá Vàng tại Việt Nam
Chủng loại Mua vào Bán ra
Đơn vị: VND    Nguồn trích dẫn: Sacombank